ZBP1 regulates mRNA stability during cellular stress
نویسندگان
چکیده
An essential constituent of the integrated stress response (ISR) is a reversible translational suppression. This mRNA silencing occurs in distinct cytoplasmic foci called stress granules (SGs), which transiently associate with processing bodies (PBs), typically serving as mRNA decay centers. How mRNAs are protected from degradation in these structures remains elusive. We identify that Zipcode-binding protein 1 (ZBP1) regulates the cytoplasmic fate of specific mRNAs in nonstressed cells and is a key regulator of mRNA turnover during the ISR. ZBP1 association with target mRNAs in SGs was not essential for mRNA targeting to SGs. However, ZBP1 knockdown induced a selective destabilization of target mRNAs during the ISR, whereas forced expression increased mRNA stability. Our results indicate that although targeting of mRNAs to SGs is nonspecific, the stabilization of mRNAs during cellular stress requires specific protein-mRNA interactions. These retain mRNAs in SGs and prevent premature decay in PBs. Hence, mRNA-binding proteins are essential for translational adaptation during cellular stress by modulating mRNA turnover.
منابع مشابه
Feedback regulation between zipcode binding protein 1 and beta-catenin mRNAs in breast cancer cells.
ZBP1 (zipcode binding protein 1) is an RNA-binding protein involved in many posttranscriptional processes, such as RNA localization, RNA stability, and translational control. ZBP1 is abundantly expressed in embryonic development, but its expression is silenced in most adult tissues. Reactivation of the ZBP1 gene has been reported in various human tumors. In this study, we identified a detailed ...
متن کاملZipcode binding protein 1 regulates the development of dendritic arbors in hippocampal neurons.
The pattern of dendritic branching, together with the density of synapses and receptor composition, defines the electrical properties of a neuron. The development of the dendritic arbor and its additional stabilization are highly orchestrated at the molecular level and are guided by intrinsic mechanisms and extracellular information. Although protein translation is known to contribute to these ...
متن کاملSpecific interaction of KIF11 with ZBP1 regulates the transport of β-actin mRNA and cell motility
ZBP1-modulated localization of β-actin mRNA enables a cell to establish polarity and structural asymmetry. Although the mechanism of β-actin mRNA localization has been well established, the underlying mechanism of how a specific molecular motor contributes to the transport of the ZBP1 (also known as IGF2BP1) complex in non-neuronal cells remains elusive. In this study, we report the isolation a...
متن کاملSpecific interaction of KIF11 with ZBP1 regulates the transport of b-actin mRNA and cell motility
ZBP1-modulated localization of b-actin mRNA enables a cell to establish polarity and structural asymmetry. Although the mechanism of b-actin mRNA localization has been well established, the underlying mechanism of how a specific molecular motor contributes to the transport of the ZBP1 (also known as IGF2BP1) complex in non-neuronal cells remains elusive. In this study, we report the isolation a...
متن کاملZBP2 Facilitates Binding of ZBP1 to -Actin mRNA during Transcription †
Cytoplasmic mRNA localization regulates gene expression by spatially restricting protein translation. Recent evidence has shown that nuclear proteins (such as hnRNPs) are required to form mRNPs capable of cytoplasmic localization. ZBP1 and ZBP2, two hnRNP K homology domain-containing proteins, were previously identified by their binding to the zipcode, the sequence element necessary and suffici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 175 شماره
صفحات -
تاریخ انتشار 2006